The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X  X  X  X  X  X  X  X  X  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  X  X  X X^2 X^2  0 X^2 X^2 X^3 X^2 X^2 X^3 X^3  0  0  0 X^2 X^2  X  X  0  X  X  X  X  X  X  X X^3  X  X
 0 X^3+X^2  0 X^2  0  0 X^2 X^3+X^2 X^3 X^3 X^3+X^2 X^2 X^3 X^3 X^3+X^2 X^2  0 X^3 X^2 X^3+X^2  0 X^3 X^2 X^3+X^2 X^3  0 X^3+X^2 X^2 X^3  0 X^3+X^2 X^2 X^3 X^2 X^3+X^2  0 X^2 X^2 X^3+X^2 X^3+X^2 X^3  0 X^3+X^2 X^2  0  0 X^3 X^3 X^3 X^3  0  0 X^2 X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^3+X^2 X^2 X^2  0  0 X^3 X^3 X^3 X^2 X^2  0 X^3+X^2 X^2 X^3+X^2 X^3+X^2 X^2 X^2  0 X^3 X^2 X^2 X^2 X^3  0 X^2 X^3  0 X^3+X^2 X^3+X^2 X^2 X^2 X^2 X^3 X^2  0
 0  0 X^3+X^2 X^2 X^3 X^2 X^3+X^2 X^3 X^3 X^2 X^3+X^2 X^3  0 X^3+X^2 X^2  0  0 X^2 X^2  0 X^3 X^3+X^2 X^3+X^2 X^3 X^3 X^3+X^2 X^3+X^2 X^3  0 X^2 X^2  0 X^2 X^2  0 X^3+X^2 X^3 X^3+X^2 X^3+X^2 X^2 X^3+X^2 X^2 X^3  0  0 X^3 X^3  0 X^2 X^3+X^2 X^3+X^2 X^2 X^2 X^3+X^2 X^3+X^2 X^2  0 X^3 X^3  0  0 X^3 X^3  0 X^2 X^2 X^3 X^2 X^2  0  0 X^3 X^2 X^3+X^2 X^2 X^2  0 X^3  0 X^2 X^3+X^2 X^3 X^3+X^2 X^2  0 X^3 X^3  0 X^2  0 X^3+X^2  0

generates a code of length 92 over Z2[X]/(X^4) who�s minimum homogenous weight is 90.

Homogenous weight enumerator: w(x)=1x^0+10x^90+152x^91+26x^92+16x^93+18x^94+8x^95+1x^96+2x^98+16x^99+2x^100+2x^102+2x^104

The gray image is a linear code over GF(2) with n=736, k=8 and d=360.
This code was found by Heurico 1.16 in 0.672 seconds.